Some Properties of Vectors: Addition of Vectors

Notes: The component method requires the knowledge of decomposing each vector into its components.

Solving problem strategy can be set up to find the resultant vector (call it \vec{R}) for the shown two head-totail vectors \vec{A} and \vec{B} .

2-a) Component Method of adding Vectors: Problem-Solving Strategy

IDENTIFY the relevant concepts and **SET UP** the problem

Target variable (Magnitude of the sum, direction or both...)

EXECUTE the solution

- 1- Find x- and y-components of each vector
- $A_x = A \cos \theta_A, A_y = A \sin \theta_A, B_x = B \cos \theta_B, and B_y = B \sin \theta_B$
- 2- Add the individual components to find R_x and R_y
- 3- $R = (R_x^2 + R_y^2)^{\frac{1}{2}}$ $\theta_R = \arctan(R_y/R_x)$

EVALUATE your answer:

Compare your answer with your estimate.

Head-to-Tail Vectors

Tail-to-Tail Vectors

Tail-to-Tail Vectors

 \mathcal{B}_{y} Prof. Rashad Badran

\mathcal{B}_{y} Prof. Rashad Badran

 \mathcal{B}_y Prof. Rashad Badran

Example

A cross-country skier skies 1.00 km north and then 2.00 km east on a horizontal snow field.

(a) How far and in what direction is she from the starting point?

(b) What are the magnitude and direction of her resultant displacement?

(a) How far and in what direction is she from the starting point?

(b) What are the magnitude and direction of her resultant displacement?

Resultant displacement $\vec{R} = ?$

Two vectors are involved in the problem!!!

The magnitude can be found using Pythagorean theory as follows

$$|\vec{R}| = \sqrt{(1.00 \text{ km})^2 + (2.00 \text{ km})^2}$$

= 2.24 km

Solution (a)

$$\begin{aligned}
\frac{|\vec{B}| = 2.00 \text{ km}}{|\vec{A}| = 0} & \quad \text{we chose set} \\
\vec{A} = 0 & \quad \vec{R} = 2.24 \text{ km}
\end{aligned}$$
The direction can be found using

 $\tan \phi = \frac{\text{Opposite side}}{\text{Adjacent side}} = \frac{2.00 \text{ km}}{1.00 \text{ km}}$

$$\phi = 63.4^{\circ}$$

She is 2.24 km from the starting point and is directed 63.4° east of north

The magnitude of her resultant displacement is 2.24 km.

The direction of her resultant with respect to the positive *x*-axis is $\theta = 26.6^{\circ}$ (or 26.6° north of east).

Conclusion: This is a simple example for the addition of head-to-tail vectors. The two vectors are the sides of a right angle triangle where each vector has a single component along *x*- or *y*- axis. This leads to the use of Pythagorean theorem to find the magnitude.

Conceptual Questions

Conceptual Question

If the component of vector \vec{A} along the direction of vector \vec{B} is zero, what can you conclude about the two vectors ?

Answer:

(a) They are parallel vectors

(c) vector \vec{B} exists but vector \vec{A} doest not exist

(b) They are antiparallel vectors

(d) They are perpendicular to each other

(e) None of those answers

Example

The three finalists in a contest are brought to the center of a large flat field. Each is given a meter stick, a compass, a calculator, a shovel, and (in a different order for each contestant) the following three displacements are:

72.4 m 32° east of north called vector \vec{A} ; 57.3 m 36° south of west called vector \vec{B} ; 17.8 m straight south called vector \vec{C} ; Find the magnitude and direction of their resultant \vec{R} .

More than two vectors are involved in the problem!!!

Head-to-Tail Vectors

Head-to-Tail Vectors

Head-to-Tail Vectors

2-a) Component Method of adding Vectors Head-to-Tail Vectors

Problem

A person going for a walk follows the shown path. The total trip contains of four straight-line paths. At the end of the walk, what is the person's resultant displacement measured from the starting point?.

W

Distance	Angle	x-component	y-component	
A = 100 m	0.0°	100.0 m	0.0 m	
B = 300 m	270.0°	0 m	-300.0 m	

Solution

W

100

400 C = 150 m

A=100 m

-200

600

 $\theta = 237.2^{\circ}$

N

S

200

B=300 m

By Prof. Rashad Badran

-E

x(m)

Distance	Angle	x-component	y-component	
A = 100 m	0.0°	100.0 m	0.0 m	0
B = 300 m	270.0°	0 m	-300.0 m	$\Theta = 1$
C = 150 m	210.0°	-130.0 m	-75.00 m	y (m)
D = 200 m	120.0°	-100.0 m	173.20 m	start
$\vec{R} = -130\hat{i} -$	- -201.8 ĵ	R _x =-130 m	R _y =-201.8 m	• = 57.2° End
$\left \vec{R} \right = \sqrt{(-130)}$	$(201)^{2} + (201)^{2}$	$(.8)^2 = 240m$		60°
$\phi = \tan^{-1}(-$	$(\frac{-201.8}{-130}) =$	57.2° South of	west	
$\theta = 180^{\circ} + 5$	7.2 = 237	.2° Counterclockv	vise	

Head-to-Tail Vectors

Example

A car travels 20 km due north and then 35 km in a direction 60° west of north. Find the magnitude and direction of the car's resultant displacement. y (km)

$$|\vec{A}| = 20km$$
 due north

Example

A car travels 20 km due north and then 35 km in a direction 60° west of north. Find the magnitude and direction of the car's resultant displacement. y(km)

Head-to-Tail

Vectors

60 $|\vec{A}| = 20km$ due north 40 60° $|\vec{B}| = 35km$ 60° west of north -40 0 20 -20 40 x (km) \mathcal{B}_{v} Prof. Rashad Badran

Example

A car travels 20 km due north and then 35 km in a direction 60° west of north. Find the magnitude and direction of the car's resultant displacement.

Head-to-Tail

Vectors

Solution

Head-to-Tail Vectors

Solution

Head-to-Tail Vectors

Alternatively one can use the component method

$$\vec{A} = 20km, |\vec{B}| = 35km, \theta_{B} = 90^{\circ} + 60^{\circ} = 150^{\circ}$$

 $\Rightarrow R = 48.2 km$

 θ_R = 128.9°

Objective Questions

Objective Question

Let vector \vec{A} point from the origin into the second quadrant of the xy plane and vector \vec{B} point from the origin into the fourth quadrant. The vector $\vec{B} - \vec{A}$

must be in which quadrant :

Answer: (a) the first

(b) the second

(c) the third

(e) Answers (b) and (d) are both possible

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$
$$\vec{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$
$$\vec{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$
$$\vec{R} = (A_{x} + B_{x})\hat{i}$$

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$
$$\vec{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$
$$\vec{R} = (A_{x} + B_{x})\hat{i}$$
$$\vec{R}_{x}$$

 \mathcal{B}_{y} Prof. Rashad Badran

 $)\hat{j}$

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$
$$\vec{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$
$$\vec{R} = (A_{x} + B_{x})\hat{i} + (A_{y} + B_{y})\hat{k}$$

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$
$$\vec{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$
$$\vec{R} = (A_{x} + B_{x})\hat{i} + (A_{y} + B_{y})\hat{j}$$
$$R_{x} \qquad R_{y}$$

Three dimensional vectors:

$$\vec{A} = A_{X}\hat{i} + A_{y}\hat{j} + A_{Z}\hat{k}$$

$$\overline{B} = B_{X}\hat{i} + B_{y}\hat{j} + B_{Z}\hat{k}$$

$$\vec{R} = (A_{X} + B_{X})\hat{i} + (A_{y} + B_{y})\hat{j} + (A_{Z} + B_{Z})\hat{k}$$

$$R_{X} \qquad R_{y}$$

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$

$$\overline{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$

$$\vec{R} = (A_{x} + B_{x})\hat{i} + (A_{y} + B_{y})\hat{j} + (A_{z} + B_{z})\hat{k}$$

$$R_{x} \qquad R_{y} \qquad R_{z}$$

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$

$$\overline{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$

$$\vec{R} = (A_{x} + B_{x})\hat{i} + (A_{y} + B_{y})\hat{j} + (A_{z} + B_{z})\hat{k}$$

$$R_{x}\hat{i} \qquad R_{y} \qquad R_{z}$$

Three dimensional vectors:

$$\vec{A} = A_{X}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$

$$\overline{B} = B_{X}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$

$$\vec{R} = (A_{X} + B_{X})\hat{i} + (A_{y} + B_{y})\hat{j} + (A_{z} + B_{z})\hat{k}$$

$$R_{X}\hat{i} \qquad R_{y}\hat{j} \qquad R_{z}$$

)*k*

 \hat{k}

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$

$$\overline{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$

$$\vec{R} = (A_{x} + B_{x})\hat{i} + (A_{y} + B_{y})\hat{j} + (A_{z} + B_{z})\hat{k}$$

$$R_{x}\hat{i} \qquad R_{y}\hat{j} \qquad R_{z}$$

Three dimensional vectors:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$

$$\overline{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$

$$\vec{R} = (A_{x} + B_{x})\hat{i} + (A_{y} + B_{y})\hat{j} + (A_{z} + B_{z})\hat{k}$$

$$\vec{R} = R_{x}\hat{i} + R_{y}\hat{j} + R_{z}\hat{k}$$

Example

Given the two displacements :

$$\vec{D} = (6\hat{i} + 3\hat{j} - \hat{k}) m$$
 and $\vec{E} = (4\hat{i} - 5\hat{j} + 8\hat{k}) m$.

Find the mangitude of the displacement $2\vec{D} - \vec{E}$

Solution

$$\vec{D} = (6\hat{i} + 3\hat{j} - \hat{k}) m$$
 and $\vec{E} = (4\hat{i} - 5\hat{j} + 8\hat{k}) m$.

Let $\vec{F} = 2\vec{D} - \vec{E}$

Solution $\vec{D} = (6\hat{i} + 3\hat{j} - \hat{k}) \text{ m} \text{ and } \vec{E} = (4\hat{i} - 5\hat{j} + 8\hat{k}) \text{ m}.$ Let $\vec{F} = 2\vec{D} - \vec{E}$ $\vec{F} = 2(6\hat{i} + 3\hat{j} - \hat{k}) m - (4\hat{i} - 5\hat{j} + 8\hat{k}) m$ $= [(12 - 4)\hat{i} + (6 + 5)\hat{j} + (-2 - 8)\hat{k}] m$ $= [8\hat{i} + 11\hat{j} - 10\hat{k}] m$

Solution

$$\vec{D} = (6\hat{i} + 3\hat{j} - \hat{k}) m \text{ and } \vec{E} = (4\hat{i} - 5\hat{j} + 8\hat{k}) m.$$

Let $\vec{F} = 2\vec{D} - \vec{E}$

$$\vec{F} = 2(6\hat{i} + 3\hat{j} - \hat{k}) m - (4\hat{i} - 5\hat{j} + 8\hat{k}) m$$

$$= [(12 - 4)i + (6 + 5)j + (-2 - 8)k] m$$

 $= [8\hat{i} + 11\hat{j} - 10\hat{k}]m$

$$\mathbf{F} = \sqrt{\mathbf{F}_{\mathrm{x}}^2 + \mathbf{F}_{\mathrm{y}}^2 + \mathbf{F}_{\mathrm{z}}^2}$$

$$=\sqrt{(8 \text{ m})^2 + (11 \text{ m})^2 + (-10 \text{ m})^2} = 17 \text{ m}$$

Problem

Consider the two vectors $\vec{A} = 3\hat{i} - 2\hat{j}$ and $\vec{B} = -\hat{i} - 4\hat{j}$. Calculate (a) $\vec{A} + \vec{B}$, (b) $\vec{A} - \vec{B}$, (c) $|\vec{A} + \vec{B}|$, (d) $|\vec{A} - \vec{B}|$, and (e) the directions of $\vec{A} + \vec{B}$ and $\vec{A} - \vec{B}$. Solution $(a)\vec{A} + \vec{B} = (3\hat{i} - 2\hat{j}) + (-\hat{i} - 4\hat{j}) = 2\hat{i} - 6\hat{j}$ $(b)\vec{A} - \vec{B} = (3\hat{i} - 2\hat{j}) - (-\hat{i} - 4\hat{j}) = 4\hat{i} + 2\hat{j}$ (e) Direction of $\vec{A} + \vec{B} = \tan^{-1}(\frac{-6}{2}) = 288.4^{\circ}$, $(c)\left|\vec{A}+\vec{B}\right| = \sqrt{(2)^2 + (-6)^2} = 6.32$ Direction of $\vec{A} - \vec{B} = \tan^{-1}(\frac{2}{A}) = 26.5^{\circ}$ $(d)\left|\vec{A} - \vec{B}\right| = \sqrt{(4)^2 + (2)^2} = 4.47$

By Prof. Rashad Badran

E

Exercise

Two vectors \vec{A} and \vec{B} have precisely equal magnitudes. For the magnitude $\vec{A} + \vec{B}$ to be 100 times larger than the magnitude of $\vec{A} - \vec{B}$, what must be the angle between them?

Problem

(a) Taking $\vec{A} = (6\hat{i} - 8\hat{j})$ units and $\vec{B} = (-8\hat{i} + 3\hat{j})$ units, and $\vec{C} = (26\hat{i} + 19\hat{j})$, determine a and b such that a $\vec{A} + b\vec{B} + \vec{C} = 0$. (b) *A* student has learned that a single equation cannot be solved to determine values for more than one unkown in it. How would you explain to him that both a and b can be determined from the single equation used in part (a)?

Solution

(a) The vectors $\vec{A} = (6\hat{i} - 8\hat{j})$, $\vec{B} = (-8\hat{i} + 3\hat{j})$, and $\vec{C} = (26\hat{i} + 19\hat{j})$ are in xy plane. Thus one can substitue these vectors into the vector equation a $\vec{A} + b\vec{B} + \vec{C} = 0$.

One can have :

$$a(\hat{6i} - \hat{8j}) + b(-\hat{8i} + \hat{3j}) + (2\hat{6i} + 1\hat{9j}) = 0 - - - - - (1)$$

This equation can be written as two algebraic equations : One for the x - axis and the other for the y - axis.

Solution Equate the coefficients of \hat{i} to get : 6a - 8b + 26 = 0 - - - - (2)Equate the coefficients of \hat{j} to get : -8a + 3b + 19 = 0 - - - - (3)

To find a and b, multiply equation (2) by 4 and equation (3) by 3 to have:

24a - 32b + 104 = 0 - - - - - (4)

-24a + 9b + 57 = 0 - - - - - - (5)

Adding equations (4) and (5) one may have: $23b = 161 \implies b = 7$

Substituting b = 7 into equation (2) to get:

a=5

Solution

(b) The single vector equation is actually divided into two algebraic equations which allow us to determine the two unknowns, a and b,

Note: If three dimensional vectors (expressed in terms of three unit vectors) are considered in the problem instead of two dimensional vectors, then the student may be able to determine three constants which may be available in the vector equation like a, b and c.

Exercise

Vector \vec{A} has x and y components of -8.7 cm and 15 cm, respectively; vector \vec{B} has x and y components of 13.2 cm and - 6.6 cm, respectively. If $\vec{A} - \vec{B} + 3\vec{C} = 0$ what are the components of \vec{C} .

Answer: $C_x = 7.3 \text{ cm}, C_y = -7.2 \text{ cm}$